47 research outputs found

    Optimal Wideband LPDA Design for Efficient Multimedia Content Delivery over Emerging Mobile Computing Systems

    Get PDF
    An optimal synthesis of a wideband Log-Periodic Dipole Array (LPDA) is introduced in the present study. The LPDA optimization is performed under several requirements concerning the standing wave ratio, the forward gain, the gain flatness, the front-to-back ratio and the side lobe level, over a wide frequency range. The LPDA geometry that complies with the above requirements is suitable for efficient multimedia content delivery. The optimization process is accomplished by applying a recently introduced method called Invasive Weed Optimization (IWO). The method has already been compared to other evolutionary methods and has shown superiority in solving complex non-linear problems in telecommunications and electromagnetics. In the present study, the IWO method has been chosen to optimize an LPDA for operation in the frequency range 800-3300 MHz. Due to its excellent performance, the LPDA can effectively be used for multimedia content reception over future mobile computing systems

    Optimization of log-periodic dipole antenna with LTE band rejection

    Get PDF
    This study presents an optimized design of a 10-dipole logperiodic antenna for UHF TV reception with LTE band rejection. The simulation of the antenna was performed in CST simulation software followed by optimization of the design using TRF (Trusted Region Framework) algorithm in the frequency range of 450 MHz-900 MHz. The parameters optimized are S11, realized gain and front-to-back ratio of the antenna. TV reception passband is 450 MHz-790 MHz and LTE band is 810 MHz-900 MHz. The proposed antenna design provides a good matching with a low S11 in the passband (470 MHz-790 MHz) and a high S11 in the stopband (i.e. LTE region of 810 MHz-900 MHz). The antenna provides a realized gain between 7 dBi and 8 dBi whereas front-to back ratio above 14 dB in the passband

    Exponential Log-Periodic Antenna Design Using Improved Particle Swarm Optimization with Velocity Mutation

    Get PDF
    An improved particle swarm optimization (PSO) method applied to the design of a new wideband log-periodic antenna (LPA) geometry is introduced. This new PSO variant, called PSO with velocity mutation (PSOvm), induces mutation on the velocities of those particles that cannot improve their position. The proposed LPA consists of wire dipoles with lengths and distances varied according to an exponential rule, which is defined by two specific parameters called length factor and spacing factor. The LPA is optimized for operation in 790-6000MHz frequency range, in order to cover the most usual wireless services in practice, and also to provide in this range the highest possible forward gain, gain flatness below 2dB, secondary lobe level below –20dB with respect to the main lobe peak, and standing wave ratio below 2. To demonstrate its superiority in terms of performance, PSOvm is compared to well-known optimization methods. The comparison is performed by applying all the methods on several test functions and also on the LPA optimization problem defined by the above-mentioned requirements. Furthermore, the radiation characteristics of the PSOvm-based LPA give prominence to the effectiveness of the proposed exponential geometry compared to the traditional Carrel’s geometry

    Hybrid Diffuse Optical Techniques for Continuous Hemodynamic Measurement in Gastrocnemius During Plantar Flexion Exercise

    Get PDF
    Occlusion calibrations and gating techniques have been recently applied by our laboratory for continuous and absolute diffuse optical measurements of foreann muscle hemodynamics during handgrip exercises. The translation of these techniques from the foreann to the lower limb is the goal of this study as various diseases preferentially affect muscles in the lower extremity. This study adapted a hybrid near-infrared spectroscopy and diffuse correlation spectroscopy system with a gating algorithm to continuously quantify hemodynamic responses of medial gastrocnemius during plantar flexion exercises in 10 healthy subjects. The outcomes from optical measurement include oxy-, deoxy-, and total hemoglobin poncentrations, blood oxygen ~aturation, and relative changes in blood flow (rBF) and oxygen consumption rate (rV02) . We calibrated rBF and rV02 profiles with absolute baseline values of BF and V02 obtained by venous and arterial occlusions, respectively. Results from this investigation were comparable to values from similar studies. Additionally, significant correlation was observed between resting local muscle BF measured by the optical technique and whole limb BF measured concurrently by a strain gauge venous plethysmography. The extensive hemodynamic and metabolic profiles during exercise will allow for future comparison studies to investigate the diagnostic value of hybrid technologies in muscles affected by disease

    Investigating the effect of child maltreatment on early adolescent peer-on-peer sexual aggression: testing a multiple mediator model in a non-incarcerated sample of Danish adolescents

    Get PDF
    Objective: The aim of the present study was to investigate the relationship between child maltreatment and severe early adolescent peer-on-peer sexual aggression, using a multiple mediator model. Methods: The study comprised 330 male Grade 9 students with a mean age of 14.9 years (SD=0.5). Results: Estimates from the mediation model indicated significant indirect effects of child physical abuse on sexual aggression via peer influence and insecure-hostile masculinity. No significant total effect of child sexual abuse and child neglect on sexual aggression was found. Conclusions: Findings of the present study identify risk factors that are potentially changeable and therefore of value in informing the design of prevention programs aiming at early adolescent peer-on-peer sexual aggression in at-risk youth

    Application of empirical mode decomposition to very low frequency signals for identification of seismic-ionospheric precursor phenomena

    No full text
    <p>This study investigates the application of empirical mode decomposition to signals from very low frequency transmitters in Europe that were received in Thessaloniki, Greece, to provide a method for depicting seismic-ionospheric precursor phenomena that occur prior to an earthquake. The basis for ionosphere interactions with seismic phenomena has been well documented in past studies, and the depiction of disturbances applied from the earthionosphere waveguide on the received signals was the purpose of this study. Empirical mode decomposition is a method for processing of nonlinear and nonstationary signals, to decompose them into their functional components, known as intrinsic mode functions. This method can provide high pass filtering to signals, thus depicting a clearer image of any abnormal disturbances in the signals that are not part of the normal noise content. Observations of such precursor phenomena are presented and correlated to earthquakes, to demonstrate the effectiveness of this method.</p><p class="western" lang="en-US"><span style="font-family: Arial, sans-serif; font-size: xx-small;"><br /></span></p&gt
    corecore